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This article introduces a computational framework for studying frequency band

structure and absorption behavior in multi-periodic acoustic composite structures.

Herein, multi-periodic acoustic composite structures are defined as periodically-layered

acoustic media wherein each layer is composed of periodically-repeated fluid unit cells,

scales (microscopic and mesoscopic, respectively) comprise the macroscopic acoustic

composite media. Exploitation of the multi-periodicity allows for efficient generation of

dispersion and absorption curves via the conventional multi-scale asymptotic method

(for homogenizing the mesoscale) coupled to the acoustic transfer matrix methods (for

the macroscale). The combined computational framework results in a single analysis

procedure for evaluating complex dispersion relationships and acoustic absorption. The

dispersion curves can be used to reveal frequency stop bands wherein the wave vector

is highly imaginary—i.e., plane waves experience rapid attenuation. They can also be

used to reinterpret classical absorption curves. The framework is applied to four multi-

periodic acoustic composite structures in order to demonstrate the framework’s utility

and to reveal novel properties, particularly those which can be influenced by design of

the mesoscopic unit cell.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Porous materials have demonstrated excellent potential for use as high strength, low-weight structural materials; as
superior noise and energy absorption materials; and in high-temperature applications [1]. Due to these properties,
research attention devoted to theoretical [2–9,11,13,15–17,52] and computational [10,12,14,18–29] formulations for
predicting and controlling their material and acoustic properties have received considerable attention in the past several
decades. However, little research attention has been paid to synthetically-derived acoustic composite structures, especially
those derived from layering of periodic porous media.

In this work, techniques from the studies of wave propagation in periodic elastic media (see the pioneering work of
Floquet [30] and Bloch [31]) and of acoustic wave propagation in layered media with arbitrary succession of fluid, elastic,
and porous layers (see the early work of Thompson [32] (corrected by Haskell [33])) are applied to analyze the dispersion
behavior of multi-periodic acoustic composite structures. In general, the dispersion curves exhibit (a) stop-band (or band-
gap) ranges, in which waves are not allowed to propagate through the structures, and (b) pass-band ones, in which waves
ll rights reserved.
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are permitted. Reviewing the existing literature, there is a tremendous amount of work done on developing analytical and
numerical approaches for predicting and control wave propagations in periodic media made of photonic, sonic, and
phononic crystals (see, e.g., Refs. [34–36] for a review). Several studies are also conducted on wave propagation in a
periodically layered composite structures made of different material properties [37–45]. However, since most of the
established approaches explicitly assume no or prescribed attenuation, the reviewed methods are not suitable for
determining and tailoring the wave propagation characteristics of arbitrary acoustic composite structures, which have
frequency-dependent dissipation properties due to viscothermal effects arising at the pore walls.

The main objective of this paper is to then present a consistent and general approach for predicting wave propagation
behavior in the fluid-filled spaces of multi-periodic acoustic composite structures. These structures will be composed of N

repetitions of a single n-layered mesoscopic unit cell containing porous acoustic materials at the microscopic level (see
Fig. 1). To do this, we begin our presentation in Section 2 by briefly reviewing a frequency-domain mathematical and
numerical procedures suitable for estimating the effective wave number ðkðiÞeff Þ and impedance ðZðiÞeff Þ characteristics of the ith
layer in the Kth mesoscopic unit cell, termed the multi-scale asymptotic method (MAM) [4–8,10–12,14,19,21] and the
hybrid numerical method (HNM) [24,25,27–29]. The MAM is used to derive a frequency-dependent set of partial
differential equations and associated boundary conditions for viscous and thermal responses from knowledge of the micro-
scale physics and geometry in a representative unit fluid cell (UFC). The HNM is an alternative method used to avoid
significant computational burden and convergence issues generated in direct computation at each frequency of interest. In
HNM, one calculates static acoustic parameters for use as input data in explicit expressions for frequency-dependent
effective density ðrðiÞeff Þ and compressibility ðwðiÞeff Þ proposed by Pride et al. [16] and Lafarge [17], respectively, in an
elaboration of the original and important steps made by Johnson et al. [9] for viscous effects, and Allard and Champoux for
thermal effects [13]. A recent and detailed account of the general theory and (HNM) modeling of both functions of
frequency may be found in [52] Part 2, Chapter 6. Subsequently, the effective variables are taken to estimate complex-
valued effective wave number ðkðiÞeff Þ and impedance ðZðiÞeff Þ as the meso-scale parameters to represent acoustic properties of
the ith layer.

In Section 3 the acoustic transfer matrix method (ATMM) is used to study plane wave propagation in the stratified
medium, either finite or infinite. Section 3.1 employs the ATMM in conjunction with the Floquet–Bloch theorem (termed
herein infinite ATMM) to derive the macroscopic dispersion curves of the infinite periodic structure case ðN-1Þ composed
of an arbitrary n-layered mesoscopic unit cell. To overcome the limitations of the infinite approach (namely, the
requirement of infinite layers), Section 3.2 describes a second analysis approach applicable to finite periodic structures
consisting of N layers, termed herein the finite ATMM. In Section 4, several numerical examples are illustrated. First,
we estimate and then collect static acoustic parameters for five UFC cases represented by three close-packed and two
Fig. 1. Three spatial scale descriptions and associated applicable methods of (a) the N periodically acoustic composite structure consisting, (b) a single

n-layered mesoscopic unit cell, which are composed of arbitrarily chosen, and (c) porous material properties.
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open-packed sphere arrangements at the micro-scale level. Second, based on the above information, we investigate the
macro-scale dispersion relations for four acoustic composite structures composed of bi-layered mesoscopic unit cells using
the infinite ATMM. We compare the general shapes of the transmission function’s amplitudes and acoustic absorption
curves for four finite N�2 structures with estimated dispersion relations, where N¼ 1;3;5;7;10 denotes the finite number
of mesoscopic unit cells present, and 2 denotes the two layers in each mesoscopic cell. Finally we explore the close
relationship between acoustic absorption and frequency band structure.

2. Mutli-scale asymptotic and hybrid numerical methods

2.1. Multi-scale asymptotic method

The multi-scale asymptotic method (MAM) [4–8,10–12,14,19,21] is utilized herein to derive the microscopic boundary
value problems whose solutions, once averaged, determine the effective density and compressibility. It assumes the
existence of a distinct scale separation between two types of spatial variations (slow variations described by x and rapid
variations described by y¼ e�1x). Here the small parameter e¼ l=d51 is a scale ratio of the characteristic UFC length l at
the micro-scale level and the characteristic layer length d at the meso-scale level. Using the knowledge of the micro-scale
pore’s physics and geometries, MAM enables one to determine frequency-dependent meso-scale material properties inside

the ith layer: frequency-dependent effective density ðrðiÞeff Þ and compressibility ðwðiÞeff Þ. These effective properties in-turn yield

the layer’s complex-valued effective wave number ðkðiÞeff Þ and acoustic impedance ðZðiÞeff Þ.

First, consider the acoustic fluid motion inside the ith layer composed of a rigid porous material. It is described by the
following set of harmonic viscous-thermal governing equations and associated boundary conditions:
�
 In the viscothermal fluid flow,

pðiÞ

P0
¼
rðiÞ

r0

þ
tðiÞ

T0
ðstate equation of a perfect gasÞ; (1)

r0iouðiÞ ¼ �rpðiÞ þðlþmÞrðr � uðiÞÞþmDuðiÞ

ior
ðiÞ

r0

¼�r � uðiÞ
ðmomentum and mass balanceÞ; (2a,b)

r0ioCptðiÞ ¼ iopðiÞ þKDtðiÞ ðenergy balanceÞ; (3)

On the fluid–solid interface,
�
uðiÞ ¼ 0 and tðiÞ ¼ 0ðno�slip and isothermal conditionsÞ (4a,b)
where r and D denotes the gradient and Laplacian operators. Here P0, r0, and T0 denote the pressure, density, and
temperature of the air at the rest, while uðiÞ, rðiÞ, and tðiÞ denote the fluid velocity, pressure and temperature variations. In
addition, the shear and bulk viscosities, specific heat at constant pressure, and heat conductivity are denoted, respectively,
by m, l, CP , and K. Following the standard MAM procedure, all solution variables and the differential operators in (1)–(4) are
considered as functions of both their mesoscopic and microscopic variations via power series involving e:

uðiÞ ¼ u0ðiÞðx; yÞþeu1ðiÞðx; yÞþe2u2ðiÞðx; yÞþ � � �

pðiÞ ¼ p0ðiÞðx; yÞþep1ðiÞðx; yÞþe2p2ðiÞðx; yÞþ � � �

tðiÞ ¼ t0ðiÞðx; yÞþet1ðiÞðx; yÞþe2t2ðiÞðx; yÞþ � � � (5)

and

r¼rxþ
1

ery; D¼Dxþ
2

e Dxyþ
1

e2
Dy (6)

Substituting (5) and (6) into (1)–(4) and retaining the leading terms, the following set of micro-scale partial differential
equations and associated boundary conditions is obtained:
�
 Momentum equation with no-slip boundaries

r0iou0ðiÞ�mDyu0ðiÞ þryp1ðiÞ ¼ �rxp0ðiÞ

ry � u0ðiÞ ¼ 0
in OðiÞf (7)

u0ðiÞ ¼ 0 on GðiÞðu0ðiÞ&p1ðiÞ : OðiÞFperiodicÞ
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Energy equation with isothermal boundaries
�
r0ioCpt0ðiÞ�KDyt0ðiÞ ¼ iop0ðiÞin OðiÞf

t0ðiÞ ¼ 0 on GðiÞ ðt0ðiÞ : OðiÞFperiodicÞ (8)

Here OðiÞ denotes the entire cell volume, OðiÞf denotes the fluid-filled spaces, and GðiÞ denotes the fluid–solid interface.
Knowing the microscopic solutions u0ðiÞ and t0ðiÞ of the above micro-scale problems, one obtains the effective density
ðrðiÞeff Þ and compressibility ðwðiÞeff Þ in the ith layer by averaging over the UFC. See our previous work [29] for a complete
discussion.

2.2. Hybrid numerical method

The formulation represented in (7) and (8) can still present difficulties in obtaining a numerical solution due to the need for
full solutions at each frequency and accompanying numerical convergence issues in the three-dimensional case. Recently, an
alternative, analytic-based approach has been introduced [24,25,27–29] (termed herein the HNM). The main advantage of this
approach is the need to solve only three static (zero angular frequency) problems instead of dynamic problems such as (7) and
(8). Namely, following the methodology introduced by Lafarge et al. [18], one can assume, at a given frequency, three
appropriate solution forms of the micro-scale velocity, pressure and temperature distributions as follows:

mu0ðiÞðx; yÞ ¼�kðiÞðy;oÞ � rxp0ðiÞðxÞ; p1ðiÞðx; yÞ ¼�pðiÞðy;oÞ � rxp0ðiÞðxÞþ p̂
1ðiÞ
ðxÞ (9a,b)

and

Kt0ðiÞðx; yÞ ¼ k
0 ðiÞðy;oÞiop0ðiÞðxÞ (10)

where kðiÞ and k
0 ðiÞ denote the micro-scale dynamic viscous and thermal permeability functions. Note in arriving at these

expressions ðp1ðiÞÞ is decomposed into a mean part ðp̂
1ðiÞ
Þ and a deviatoric part ðpðiÞÞ having zero mean value. Substituting (9)

and (10) into (7) and (8) and addressing the relevance (in a high-frequency limit) between electrical conduction and sound
propagation [12,17,27–29,46] yield the following set of three different static problems to be solved for computing seven
static parameters (see below Eqs. (14) and (15)) of the porous acoustic material inside the ith layer:
�
 Viscous: Stokes equation with no-slip boundaries

rypðiÞ�DykðiÞ ¼ I

ry � k
ðiÞ
¼ 0

in OðiÞf (11)

kðiÞ ¼ 0 on GðiÞ ðkðiÞ and pðiÞ : OðiÞFperiodicÞ

Thermal: heat equation with isothermal boundaries
�
�Dyk
0 ðiÞ ¼ 1 in OðiÞf (12)

k
0 ðiÞ ¼ 0 on GðiÞ ðk

0 ðiÞ : OðiÞFperiodicÞ

Electrical: conduction problem with insulation boundaries
�
r � EðiÞ ¼ 0 with EðiÞ ¼ �ryuðiÞ þI in OðiÞf (13)

EðiÞ � n¼ 0 on GðiÞ ðjðiÞ : OðiÞFperiodicÞ
Here EðiÞab ða;b¼ 1;2;3Þ represents the scaled electric field, uðiÞ the deviatoric part of the electric potential, and n the unit
outward normal vector from the pore region. In addition, I denotes a 3�3 identity matrix composed of three unit vectors
(e) directed along a global coordinate system. In particular, the static parameters can be also reduced from tensor-based
values to scalars by referring to their own symmetry properties in static regime [47]. These parameters are taken to be the
static viscous and thermal permeability ðk̂

ðiÞ

0 ; k̂
0 ðiÞ

0 Þ, the tortuosity factor ðaðiÞ1Þ, the static viscous and thermal tortuosity
ðaðiÞ0 ;a

0 ðiÞ
0 Þ, and the viscous and thermal characteristic lengths ðLðiÞ;L

0 ðiÞ
Þ, which are simply calculated by the following

standard definitions [9,17]:

k̂
ðiÞ

0 ¼fðiÞ/kðiÞS¼ k̂
ðiÞ

0 ; k̂
0 ðiÞ

0 ¼fðiÞ/k
0 ðiÞS; aðiÞ�1

1 ¼/EðiÞS¼ aðiÞ�1
1 ; (14)

and

aðiÞ0 ¼
/kðiÞ2S

/kðiÞS2
; a

0 ðiÞ
0 ¼

/k
0 ðiÞ2S

/k0 ðiÞS2
; LðiÞ ¼ 2

R R R
OðiÞE

ðiÞ2 dOðiÞR R
GðiÞE

ðiÞ2 dGðiÞ
; L

0 ðiÞ
¼ 2

R R R
OðiÞ dO

ðiÞR R
GðiÞ dG

ðiÞ
(15)
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with fðiÞ ¼OðiÞf =O
ðiÞ and /�S¼

R
OðiÞ �dO

ðiÞ=OðiÞf . Here subscripts 0 and 1 represent quantities evaluated at o¼ 0 and
the high frequency limit case, respectively. These then serve as input data in explicit expressions for the ith
frequency-dependent effective density ðrðiÞeff Þ and compressibility ðwðiÞeff Þ variables proposed by Pride et al. [16] and
Lafarge [17], respectively

iorðiÞeff/u0ðiÞS¼�rxp0ðiÞ and iowðiÞeff p0ðiÞ ¼ �rx �/u0ðiÞS (16a,b)

where

rðiÞeff ¼ r0a
ðiÞ
1 1þ

f ðiÞðzðiÞÞ

izðiÞ

" #
and wðiÞeff ¼

1

gP0
g�ðg�1Þ 1þ

f
0 ðiÞðz

0 ðiÞ
Þ

iz
0 ðiÞ

" #�1
8<
:

9=
; (17a,b)

with

f ðiÞðzðiÞÞ ¼ 1�qðiÞ þqðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ izðiÞ

MðiÞ

2qðiÞ2

s
; f

0 ðiÞðz
0 ðiÞ
Þ ¼ 1�q

0 ðiÞ þq
0 ðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iz

0 ðiÞ M
0 ðiÞ

2q0 ðiÞ2

s
(18)

zðiÞ ¼
or0k̂

ðiÞ

0 aðiÞ1
mfðiÞ

; z
0 ðiÞ
¼
or0k̂

0 ðiÞ

0 Pr

mfðiÞ
; MðiÞ ¼

8k̂
ðiÞ

0 aðiÞ1
LðiÞ2fðiÞ

; M
0 ðiÞ ¼

8k̂
0 ðiÞ

0

L
0 ðiÞ2fðiÞ

(19)

and

qðiÞ ¼
MðiÞ

4
aðiÞ0

aðiÞ1
�1

 ! ; q
0 ðiÞ ¼

M
0 ðiÞ

4ða
0 ðiÞ
0 �1Þ

(20)

where f ðiÞ and f
0 ðiÞ represent the ith dimensionless viscous and thermal shape functions of each angular frequency ðzðiÞ; z

0 ðiÞ
Þ,

and MðiÞ and M
0 ðiÞ the corresponding dimensionless viscous and thermal shape factors, respectively, while qðiÞ and q

0 ðiÞ

associated dimensionless supplementary parameters. Using the definitions of the two effective parameters (16), one can
derive the acoustic wave equation as follows:

rx �
1

rðiÞeff

rxp0ðiÞ

0
@

1
Aþo2wðiÞeff p0ðiÞ ¼ 0 (21)

Finally, the effective wave number ðkðiÞeff Þ and impedance ðZðiÞeff Þ are defined as,

kðiÞeff ¼o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðiÞeffw

ðiÞ
eff

q
and ZðiÞeff ¼

1

fðiÞ

ffiffiffiffiffiffiffiffi
rðiÞeff

wðiÞeff

vuut (22a,b)

3. Acoustic transfer matrix formulation

We next employ the acoustic transfer matrix method (ATMM) for studying frequency band structure in multi-periodic
acoustic composite structures. The ATMM is given in an explicit and elegant one-dimensional analytic form. Note that for
layered elastic composite structures, an equivalent method, termed the elastic transfer matrix method (ETMM), was
previously introduced by Esquivel-Sirvent and Cocoletzi in the infinite case [40], Cao and Qi in the finite case [42], and
recently Hussein et al. in both cases [43]. However, unlike the existing ETMM method, the ATMM is especially suitable to
study dissipative wave propagation characteristics in the one-dimensionally periodic, layered acoustic composite
composed of dispersive properties created in rigid porous materials in the infinite (Section 3.1) and finite (Section 3.2)
cases.

3.1. Infinite periodic case

Let us first consider the one-dimensional configuration of the infinite, n-layered mesoscopic unit cell composed of
different porous material properties and thicknesses (Fig. 2). As sketched in Fig. 2, acoustic properties of the ith layer in the
mesoscopic unit cell are explicitly represented by frequency-dependent and complex-valued effective wave number ðkðiÞeff Þ

and impedance ðZðiÞeff Þ, porosity ðfðiÞÞ, and material thickness ðdðiÞÞ, obtained from the previous section (see Section 3.2).
The governing equation for harmonic plane wave propagation along the x-axis can be rewritten from (21):

1

rðiÞeff

d2pðiÞ

dx2
þo2wðiÞeff pðiÞ ¼ 0 (23)

Note that here and throughout the rest of the acoustic transfer matrix development, superscript 0 in (23) is omitted for
convenience. Two boundary conditions have to be satisfied at each layer interface: (i) continuity of the pressure p and
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Fig. 2. Mesoscopic unit cell consisting of n sub-layers. Acoustic property and thickness of the ith layer are denoted by ð�ÞðiÞ , while left and right interface

boundaries of the ith layer are identified by ð�ÞðiÞb and ð�Þðiþ1Þb , respectively.
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(ii) continuity of the effective velocity ueff (equally fu). These boundary conditions are similar to the impedance tube
method (ITM) [15,48–50] used to calculate the acoustic absorption coefficient a. Without loss of generality, the solution of
Eq. (23) in the ith layer is assumed as a superposition of forward and backward traveling waves:

pðiÞðxÞ ¼ PðiÞþ e�ikðiÞ
eff

x
þPðiÞ� eikðiÞ

eff
x (24)

Substituting (22) and (24) into (16a), the effective velocity component can be given in terms of PðiÞþ and PðiÞ� :

uðiÞeff ðxÞ ¼fðiÞuðiÞðxÞ ¼fðiÞ½UðiÞþ e�ikðiÞ
eff

x
þUðiÞ� eikðiÞ

eff
x
� ¼

PðiÞþ

ZðiÞeff

e�ikðiÞ
eff

x
�

PðiÞ�

ZðiÞeff

eikðiÞ
eff

x (25)

For convenience, (24) and (25) can be simply rewritten in the following matrix form as

pðiÞðxÞ

uðiÞeff ðxÞ

8<
:

9=
;¼

1 1
1

ZðiÞeff

�
1

ZðiÞeff

2
64

3
75 PðiÞþ e�ikðiÞ

eff
x

PðiÞ� eikðiÞ
eff

x

8<
:

9=
;¼ BðiÞ

PðiÞþ e�ikðiÞ
eff

x

PðiÞ� eikðiÞ
eff

x

8<
:

9=
; (26)

Using the relation xðiþ1Þb ¼ xðiÞbþdðiÞ and the inverse relation from (26), the interface boundary values of the pressure pðiÞ

and effective velocity uðiÞeff at xðiÞb are linearly related to those at xðiþ1Þb through

pðiÞðxðiþ1ÞbÞ

uðiÞeff ðx
ðiþ1ÞbÞ

8<
:

9=
;¼ BðiÞ

e�ikðiÞ
eff

dðiÞ 0

0 eikðiÞ
eff

dðiÞ

" #
PðiÞþ e�ikðiÞ

eff
xðiÞ

PðiÞ� eikðiÞ
eff

xðiÞ

8<
:

9=
;¼ BðiÞDðd

ðiÞÞ
PðiÞþ e�ikðiÞ

eff
xðiÞ

PðiÞ� eikðiÞ
eff

xðiÞ

8<
:

9=
;

¼ BðiÞDðd
ðiÞÞ½BðiÞ�

�1
pðiÞðxðiÞbÞ

uðiÞeff ðx
ðiÞbÞ

8<
:

9=
;¼ TðiÞ

pðiÞðxðiÞbÞ

uðiÞeff ðx
ðiÞbÞ

8<
:

9=
; (27)

where TðiÞ is the 2�2 acoustic transfer matrix for the ith layer and is defined as the following form:

TðiÞ ¼ BðiÞDðd
ðiÞÞ½BðiÞ�

�1 ¼
1

2

e�iðkðiÞ
eff

dðiÞÞ
þeiðkðiÞ

eff
dðiÞÞ ZðiÞeff ½e

�iðkðiÞ
eff

dðiÞÞ
�eiðkðiÞ

eff
dðiÞÞ
�

1

ZðiÞeff

½e�iðkðiÞ
eff

dðiÞÞ
�eiðkðiÞ

eff
dðiÞÞ
� e�iðkðiÞ

eff
dðiÞÞ
þeiðkðiÞ

eff
dðiÞÞ

2
6664

3
7775 (28)

Since the construction of the acoustic transfer matrix TðiÞ is valid for any arbitrary layer in a mesoscopic unit cell, one can
obtain the complete acoustic transfer matrix T for the n layered mesoscopic unit cell containing n different porous acoustic
materials (see Fig. 2). Extending the above result (28) in the iteration process, the pressure and effective velocity at the left
boundary ðxð1ÞbÞ of the 1th layer are related to those at the right boundary ðxðnþ1ÞbÞ of the nth layer by

pðnÞðxðnþ1ÞbÞ

uðnÞeff ðx
ðnþ1ÞbÞ

( )
¼ T

pð1Þðxð1ÞbÞ

uð1Þeff ðx
ð1ÞbÞ

8<
:

9=
; (29)

where

T¼ TðnÞTðn�1Þ
� � �Tð1Þ (30)

Here T will be denoted as the accumulated acoustic transfer matrix with d¼ dð1Þ þdð2Þ þ � � � þdðnÞ at the meso-scale
level.
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Let us now consider the acoustic composite structure composed of an infinite repetition of a single n layered
mesoscopic unit cell. To do this, we may invoke the Floquet–Bloch theorem that relates the harmonic response at a given
point in a unit cell to the corresponding point in an adjacent one, yielding

pðiÞðxþdÞ

uðiÞeff ðxþdÞ

8<
:

9=
;¼ e�iqd

pðiÞðxÞ

uðiÞeff ðxÞ

8<
:

9=
; (31)

where q is the wave number corresponding to the macroscopic wave field across the periodic structure. Substituting (31)
into (29), the following eigen-value problem is given:

½T�Ie�iqd�
pð1Þðxð1ÞbÞ

uð1Þeff ðx
ð1ÞbÞ

8<
:

9=
;¼ 0 (32)

The solution of (32) appears in complex conjugate pairs and provides dispersion curves for one-directional wave propagation
in the infinite multi-periodic acoustic composite structure characterized by the cumulative acoustic transfer matrix T. Finally,
one can predict the macro-scale frequency band structure (equivalently the widths and locations of the damping stop- and
pass-bands) due to mismatch and multiple layouts of constituent acoustic properties at the meso-scale level.

3.2. Finite periodic case

In the Section 3.1, the ATMM in conjunction with the Floquet–Bloch theorem has been explicited. However, referring
the existing literature, one can easily observe that the procedure is only valid for an infinite periodic case. Therefore,
another analysis approach is clearly needed for the finite N periodic case. A similar derivation for an elastic composite was
previously introduced by Cao and Qi [42] and Hussein et al. [43].

Let us consider a finite acoustic composite structure with periodically N-repeated mesoscopic unit cells, each of unit cell
lengths d and n sub-layers, which consist of different rigid porous acoustic materials at the micro-scale level (Fig. 1). Here
one can calculate the macroscopic length of the structure as NLayer ¼ dN. First, assume that the structure is immersed in a

material that has the same properties as those of the first layer in the unit cell (equally, k
ðNLayer þ1Þ

eff ¼ kð1Þeff and Z
ðNLayer þ1Þ

eff ¼ Zð1Þeff ).

Using the above assumption and the previous result (26), a new acoustic transfer matrix TðiÞ is redefined as follows:

PðiÞ ¼ TðiÞPðiþ1Þ; with PðiÞ ¼ bP
ðiÞ
þ PðiÞ� c

T (33)

where

TðiÞ ¼ ½TðiÞBðiÞCðx
ðiÞbÞ��1Bðiþ1ÞCðx

ðiÞbþdðiÞÞ ¼
1

2Zðiþ1Þ
eff

ðZðiÞeff þZðiþ1Þ
eff Þe

iðkðiÞ
eff
�kðiþ 1Þ

eff
ÞðxðiÞbþdðiÞÞ

ð�ZðiÞeff þZðiþ1Þ
eff Þe

iðkðiÞ
eff
þkðiþ 1Þ

eff
ÞðxðiÞbþdðiÞÞ

ð�ZðiÞeff þZðiþ1Þ
eff Þe

�iðkðiÞ
eff
þkðiþ 1Þ

eff
ÞðxðiÞbþdðiÞÞ

ðZðiÞeff þZðiþ1Þ
eff Þe

�iðkðiÞ
eff
�kðiþ 1Þ

eff
ÞðxðiÞbþdðiÞÞ

2
64

3
75

(34)

with CðxðiÞbÞ ¼ diag½e�ikðiÞ
eff

xðiÞb ; eikðiÞ
eff

xðiÞb
�. Extending (33) in the iteration process across the structure, the following relationship

is derived:

Pð1Þ ¼ ½Tð1ÞTð2Þ � � �TðNLayer Þ�PðNLayer þ1Þ ¼ TPðNLayer þ1Þ (35)

with

T ¼
T11 T12

T21 T22

" #
(36)

Here PðNLayer þ1Þ denotes a vector describing forward and backward traveling wave coefficients in the material that the

structure is immersed in. Second, let us consider two types of boundary conditions to estimate (i) a transmission function
and (ii) an acoustic absorption coefficient for the structure, respectively. The first type of the associated boundary condition

is the absorbing boundary condition [42,43] (or PðNLayer þ1Þ
� ¼ 0) where waves are not allowed to reflect-back on the right side

of the structure, which most published finite TMMs are exclusively based on. Applying the absorbing boundary condition

into (35), the frequency-dependent transmission function Hðf Þ is defined:

Hðf Þ ¼
P
ðNLayer þ 1Þ

þ e�ik
ðNLayerþ 1 Þ

eff
Nd

Pð1Þþ
¼

1

T11

e�ik
ðNLayer þ 1 Þ

eff
Nd (37)

which represents an amplitude and phase relationships between the incident wave at xð1Þb ¼ 0 and the transmitted wave at

xðNLayer þ1Þ ¼Nd. On the other hand, different boundary conditions are chosen to elucidate the relationship of the frequency
band structure to the acoustic absorption behavior in the structure. Here we use an appropriate set of boundary conditions

[15,48–50], which are: (iia) on the region xð1Þbo0, the structure is in contact with an air of wave number k0 and impedance
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Fig. 3. Three-dimensional unit fluid cell geometries for three close- and two open-packed sphere arrangements: (a) SC-based UFC model, (b) BCC-based

UFC model, (c) FCC-based UFC model, (d) opened sphere packing UFC model 1, and (e) open sphere packing UFC model 2.

Table 1
Fluid material properties used in all studies.

r0 T0 P0 m Pr g

1.293 kg/m3 300 K 105 Pa 1.7210�5 kg(ms)�1 0.715 1.4

Table 2
Statically-estimated parameters for close- and open-packed sphere arrangements considered.

Closed sphere packing Opened sphere packing

SC BCC FCC OC1 OC2

f 0.476 0.319 0.259 0.668 0.818

k̂0 ð�10-9 kg=m3Þ 9.754 2.017 0.672 41.52 85.05

k̂0
0 ð�10-8 Pa�1

Þ 2.451 0.388 0.268 8.570 16.08

a0 2.063 2.152 2.458 1.682 1.426

a0
0 1.439 1.353 1.856 1.264 1.199

a1 1.397 1.487 1.652 1.317 1.147

L (�10�3 m) 0.378 0.233 0.159 0.267 0.272

L0 (�10�3 m) 0.624 0.325 0.247 0.363 0.324
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Fig. 4. (a) Real, (b) imaginary parts of the effective wavenumber ðkeff Þ versus frequency, (c) real and (d) imaginary parts of effective impedance ðZeff Þ

versus frequency (based on the hybrid numerical approach).
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Z0 and (iib) at the right end side of the boundary, xðNLayer þ1Þb waves are allowed to fully reflect back by a rigid impervious

wall ðu
ðNLayer Þ

eff ðxðNLayer þ1ÞbÞ ¼ 0Þ:
�
 Boundary condition at xð1Þb,

Pð0Þþ þPð0Þ� ¼ Pð1Þþ þPð1Þ�

Pð0Þþ �Pð0Þ� ¼
Zð0Þ

Zð1Þeff

ðPð0Þþ �Pð0Þ� Þ
or Pð0Þ ¼

1

2

1þ
Zð0Þ

Zð1Þeff

1�
Zð0Þ

Zð1Þeff

1�
Zð0Þ

Zð1Þeff

1þ
Zð0Þ

Zð1Þeff

2
666664

3
777775Pð1Þ ¼ Tð0ÞPð1Þ (38)

Boundary condition at xðNLayer þ1Þb,
�
P
ðNLayer þ1Þ
þ e�ik

ðNLayer þ 1Þ

eff
x
ðNLayer þ 1Þb

¼ PðNLayer þ1Þ
� eik

ðNLayer þ 1Þ

eff
x
ðNLayer þ 1Þb

(39)

or

PðNLayer þ1Þ ¼
1 0

e�2ik
ðNLayer þ 1Þ

eff
x
ðNLayer þ 1Þ

0

" #
PðNLayer þ1Þ ¼ TðNLayer þ1ÞPðNLayer þ1Þ (40)
Associated with boundary conditions (38) and (40), a new acoustic transfer matrix T
B

is derived as follows:

Pð0Þ ¼ ½Tð0ÞTð1ÞTð2Þ � � �TðNLayer ÞTðNLayer þ1Þ�PðNLayer þ1Þ ¼ T
B
PðNLayer þ1Þ (41)

where

T
B
¼

T
B

11 T
B

12

T
B

21 T
B

22

2
4

3
5 (42)
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Fig. 5. Real and imaginary parts of frequency-dependent wave numbers |q| for infinite-periodic acoustic composite structures (ACS) and equivalent

fictional ones (FACS) with each bi-layer per four mesoscopic unit cells. For convenience, stop bands are shaded: (a) FCC+BCC mesoscopic unit cell, (b)

FCC+SC mesoscopic unit cell, (c) FCC+OC1 mesoscopic unit cell, and (d) FCC+OC2 mesoscopic unit cell.

C.-Y. Lee et al. / Journal of Sound and Vibration 329 (2010) 1809–18221818
Finally, one can calculate the frequency-dependent acoustic absorption coefficient of the acoustic composite structure as
follows:

a¼ 1�
Pð0Þ�
Pð0Þþ

�����
�����
2

(43)

4. Numerical results and validations

To implement our numerical formulation, we first calculated static acoustic parameters for five UFC cases, represented
by three closed and two opened sphere packing types of porous materials, using the MAM and HNM processes, and then
estimated each effective wave number and impedance using (22). These effective variables are used as the meso-scale
parameters representing acoustic properties of an arbitrary chosen layer within a mesoscopic unit cell (Section 3). For each
packing type, Fig. 3 depicts the irreducible unit fluid cells consisting of the fluid-fluid interstitial space between packed
spheres.

Similar to our previous work [29], the radius of the sphere is chosen to be 1 mm and we include a solder joint at each
sphere contact point, where the solder radius of the closed packing case is 150mm and that of the opened packing case is
750mm ((d) in Fig. 3) and 850mm ((e) in Fig. 3), respectively. Table 1 provides the coefficients used in the implementation
of our approach.

Using the finite element analysis package, COMSOLs Multiphysics, the numerical solutions of the static acoustic
parameters ((14) and (15)) are calculated from the decoupled set of three static governing equations and associated
boundary conditions on the above representative UFC domain. All parameters are collected in Table 2.

Using the estimated parameters in Table 2 as the input data for Eq. (17), we calculated the effective density and
compressibility variables, and then estimated the effective wave number and impedance in a frequency range of interest
(here, from 10 to 10,000 Hz), as shown in Fig. 4.

We investigated the macro-scale dispersion relations for four acoustic composite structures composed of bi-layered
mesoscopic unit cells using the infinite ATMM. Herein, bi-layered mesoscopic unit cells are defined as two layers of
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Fig. 6. Frequency-dependent transmission function jHj for the finite structure case composed of 1, 3, 5, 7, and 10 FCC+OC1 mesoscopic unit cells. Stop

band regions for the associated infinite case are described by green boxes each figures: (a) 1 repeated FCC+OC1 unit cell, (b) 3 repeated FCC+OC1 unit cell,

(c) 5 repeated FCC+OC1 unit cell, (d) 7 repeated FCC+OC1 unit cell, and (e) 10 repeated FCC+OC1 unit cell.
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acoustic properties of FCC model with dð1Þ ¼ 0:02 m and one other layer (SC, BCC, OC1, or OC2 model) with dð2Þ ¼ 0:1 m.
Fig. 5 provides the frequency band structures in infinite-periodic acoustic composite structures in a frequency range of
10r f r6;000 Hz for wave numbers falling in the first Brillouin zone [51], i.e., 0rqrp. Real-valued wave numbers are
associated with pass-band modes, while the imaginary-valued ones correspond to stop-band modes. For purposes of
comparison, we also considered fictional acoustic composite structures (FACS) having no imaginary parts of effective
density and compressibility parameters-equally, no attenuation effects.

As can be seen in Fig. 5, the ACS composed of the FCC+OC2 bi-layered mesoscopic unit cell demonstrates the widest
stop-bands as compared to the other bi-layered materials. This is due to the high mismatch between constituent acoustic
properties. Moreover, unlike the distinct resonance appearances in the fictional ACS, one can observe that the introduction
of the real materials’ attenuation effects enhances the anti-resonances due to damping.
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Fig. 7. Comparison of acoustic absorption coefficients from finite ATMM and ITM via frequency.

Fig. 8. Frequency-dependent acoustic absorption coefficients a for the finite ACSs composed of 1, 3, 5, 7, and 10 four bi-layered mesoscopic unit cells.

Stop band regions for the corresponding infinite ones are shaded: (a) finite ACS with FCC+BCC unit cells, (b) finite ACS with FCC+SC unit cells, (c) finite

ACS with FCC+OC1 unit cells, and (d) finite ACS with FCC+OC2 unit cells.
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To assess the validity of estimated dispersion relations, we choose the validation process used in the ETMM to
investigate the finiteness effects on the frequency band structure [42,43]. Fig. 6 shows the frequency-dependent
transmission function jHj of the finite ACS composed of FCC+OC1 bi-layered mesoscopic unit cell as a function of the
repeated number N¼ 1;3;5;7;10.
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For comparison purposes, we also plot the corresponding finite FACS. As one can see, for the structures composed of 1
and 3 finite-periodic unit cells, the damped frequency band structure does not match well with those of the infinite-
periodic unit cell. However, in finite ACS made of at least 5 repeated unit cells, the general shape of the transmission
function closely agrees with the damped frequency band width and location of the infinite one. This result implies that the
transmission response predictions for a finite composite can be appropriately predicted from the associated infinite one.

We next investigate the relationship between acoustic absorption behavior and frequency band structure in multi-
periodic acoustic composite structures using the finite ATMM. To do so, we calculate the frequency-dependent acoustic
absorption coefficients a for the four cases of the finite ACS composed of four bi-layered mesoscopic unit cells with the
repeated numbers N¼ 1;3;5;7;10. We consider the 3 and 7 repeated FCC+OC1 unit cell cases to demonstrate the validity
of the finite ATTM with (38) and (40) by comparing our numerical results with the traditional absorption curves calculated
from the ITM [15,48–50], as shown in Fig. 7.

As can be seen in Fig. 7, the frequency-dependent acoustic absorption coefficients obtained from both approaches are in
close agreement in the frequency range of interest. Moreover, this result elucidates the close relationship between acoustic
absorption and frequency band structure. To validate and test this link, the acoustic absorption coefficient a, given in Eq.
(43), is estimated for the finite structure with N¼ 1;3;5;7;10 over the same frequency range considered in Fig. 5, and the
results are illustrated in Fig. 8. For convenience, stop band regions for the corresponding infinite cases are also shaded.

As the repeated number N of a unit cell increases, each shape of four acoustic absorption coefficients closely agree with
the frequency band width and location of the corresponding infinite ACS. This result is consistent with the previous result
regarding the transmission functions behaviors in a frequency range of interest (Fig. 6). The close relationship of the
damped frequency band structure to the acoustic absorption behavior of the finite acoustic composite structure brings rise
to the conclusion that the finite acoustic composite structure can be designed for both a desired band structure (e.g.,
desired stop bands) as well as for efficient acoustic absorption using the techniques developed herein.

5. Conclusion

In conclusion, the wave propagation behavior in multi-periodic acoustic composite structures has been investigated
with the aim of predicting and controlling their dispersion behavior. Infinite and finite acoustic transfer matrix methods
have been illustrated which yield damped frequency band structure and associated acoustic absorption curves. Several
examples are numerically evaluated using four periodic porous media as basic building blocks. We have compared the
general shapes of acoustic absorption curves for the finite periodic cases with frequency band structures for the
corresponding infinite ones, and established a general guideline that five or more unit cells are needed to justify the use of
an infinite transfer matrix. Using mismatch and multiple layouts of constituent acoustic properties and thicknesses inside
arbitrary meso-scale unit cells, it is shown on the examples how the extents of pass- and stop-bands can be optimized to
some extent. We have also explored the close relationship between acoustic absorption and frequency band structure.
Follow-on work may consider systematically designing acoustic composite structures, using the analysis tools presented,
for use in acoustic waveguide and filter applications.
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